ЭЛЕКТРИЧЕСКИЙ ЗАРЯД. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Электрический заряд q — физическая величина, определяющая интенсивность электромагнитного взаимодействия.

Атомы состоят из ядер и электронов. В состав ядра входят положительно заряженные протоны и не имеющие заряда нейтроны. Электроны несут отрицательный заряд. Количество электронов в атоме равно числу протонов в ядре, поэтому в целом атом нейтрален.

Заряд любого тела: q = ±Ne , где е = 1,6*10 -19 Кл — элементарный или минимально возможный заряд (заряд электрона), N — число избыточных или недостающих электронов. В замкнутой системе алгебраическая сумма зарядов остается постоянной:

Точечный электрический заряд — заряженное тело, размеры которого во много раз меньше расстояния до другого наэлектризованного тела, взаимодействующего с ним.

Два неподвижных точечных электрических заряда в вакууме взаимодействуют с силами, направленными по прямой, соединяющей эти заряды; модули этих сил прямо пропорциональны произведению зарядов и обратно пропорциональны квадрату расстояния между ними:

Электрическое поле единица измерения

Электрическое поле единица измерения

где Электрическое поле единица измерения— электрическая постоянная.

где Электрическое поле единица измерения12 — сила, действующая со стороны второго заряда на первый, а Электрическое поле единица измерения21 — со стороны первого на второй.

Электрическое поле единица измерения

ЭЛЕКТРИЧЕСКОЕ ПОЛЕ. НАПРЯЖЕННОСТЬ

Факт взаимодействия электрических зарядов на расстоянии можно объяснить наличием вокруг них электрического поля — материального объекта, непрерывного в пространстве и способного действовать на другие заряды.

Поле неподвижных электрических зарядов называют электростатическим.

Характеристикой поля является его напряженность.

Электрическое поле единица измерения

Напряженность электрического поля в данной точке — это вектор, модуль которого равен отношению силы, действующей на точечный положительный заряд, к величине этого заряда, а направление совпадает с направлением силы.

Напряженность поля точечного заряда Q на расстоянии r от него равна

Электрическое поле единица измерения

Принцип суперпозиции полей

Напряженность поля системы зарядов равна векторной сумме напряженностей полей каждого из зарядов системы:

Электрическое поле единица измеренияЭлектрическое поле единица измерения

Диэлектрическая проницаемость среды равна отношению напряженностей поля в вакууме и в веществе:

Электрическое поле единица измерения

Она показывает во сколько раз вещество ослабляет поле. Закон Кулона для двух точечных зарядов q и Q , расположенных на расстоянии r в среде c диэлектрической проницаемостью :

Электрическое поле единица измерения

Напряженность поля на расстоянии r от заряда Q равна

Электрическое поле единица измерения

ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ ЗАРЯЖЕННОГО ТЕЛА В ОДНОРОДНОМ ЭЛЕКТРО-СТАТИЧЕСКОМ ПОЛЕ

Между двумя большими пластинами, заряженными противоположными знаками и расположенными параллельно, поместим точечный заряд q .

Так как электрическое поле между пластинами с напряженностью Электрическое поле единица измеренияоднородное, то на заряд во всех точках действует сила F = qE , которая при перемещении заряда на расстояние Электрическое поле единица измерениявдоль Электрическое поле единица измерениясовершает работу

Электрическое поле единица измерения

Эта работа не зависит от формы траектории, то есть при перемещении заряда q вдоль произвольной линии L работа будет такой же.

Работа электростатического поля по перемещению заряда не зависит от формы траектории, а определяется исключительно начальным и конечным состояниями системы. Она, как и в случае с полем сил тяжести, равна изменению потенциальной энергии, взятому с противоположным знаком:

Электрическое поле единица измерения

Из сравнения с предыдущей формулой видно, что потенциальная энергия заряда в однородном электростатическом поле равна:

Электрическое поле единица измерения

Потенциальная энергия зависит от выбора нулевого уровня и поэтому сама по себе не имеет глубокого смысла.

ПОТЕНЦИАЛ ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И НАПРЯЖЕНИЕ

Потенциальным называется поле, работа которого при переходе из одной точки поля в другую не зависит от формы траектории. Потенциальными являются поле силы тяжести и электростатическое поле.

Работа, совершаемая потенциальным полем, равна изменению потенциальной энергии системы, взятой с противоположным знаком:

Электрическое поле единица измерения

Потенциал — отношение потенциальной энергии заряда в поле к величине этого заряда:

Электрическое поле единица измерения

Потенциал однородного поля равен

Электрическое поле единица измерения

где d — расстояние, отсчитываемое от некоторого нулевого уровня.

Потенциальная энергия взаимодействия заряда q с полем равна Электрическое поле единица измерения.

Поэтому работа поля по перемещению заряда из точки с потенциалом φ1 в точку с потенциалом φ2 составляет:

Электрическое поле единица измерения

Величина Электрическое поле единица измеренияназывается разностью потенциалов или напряжением.

Напряжение или разность потенциалов между двумя точками — это отношение работы электрического поля по перемещению заряда из начальной точки в конечную к величине этого заряда:

НАПРЯЖЕННОСТЬ ПОЛЯ И РАЗНОСТЬ ПОТЕНЦИАЛОВ

При перемещении заряда q вдоль силовой линии электрического поля напряженностью Электрическое поле единица измеренияна расстояние Δ d поле совершает работу

Электрическое поле единица измерения

Так как по определению, Электрическое поле единица измерениято получаем:

Электрическое поле единица измерения

Отсюда Электрическое поле единица измеренияи напряженность электрического поля равна

Электрическое поле единица измерения

Итак, напряженность электрического поля равна изменению потенциала при перемещении вдоль силовой линии на единицу длины.

Электрическое поле единица измерения

Если положительный заряд перемещается в направлении силовой линии, то направление действия силы совпадает с направлением перемещения, и работа поля положительна:

Электрическое поле единица измерения

Тогда Электрическое поле единица измерения, то есть напряженность направлена в сторону убывания потенциала.

Напряженность измеряют в вольтах на метр:

Напряженность поля равна 1 В/м, если напряжение между двумя точками силовой линии, расположенными на расстоянии 1 м, равна 1 В.

Если независимым образом измерять заряд Q , сообщаемый телу, и его потенциал φ, то можно обнаружить, что они прямо пропорциональны друг другу:

Электрическое поле единица измерения

Величина С характеризует способность проводника накапливать электрический заряд и называется электрической емкостью. Электроемкость проводника зависит от его размеров, формы, а также электрических свойств среды.

Электроёмкостъ двух проводников — отношение заряда одного из них к разности потенциалов между ними:

Электрическое поле единица измерения

Емкость тела равно 1 Ф , если при сообщении ему заряда 1 Кл оно приобретает потенциал 1 В.

Конденсатор — два проводника, разделенные диэлектриком, служащие для накопления электрического заряда. Под зарядом конденсатора понимают модуль заряда одной из его пластин или обкладок.

Способность конденсатора накапливать заряд характеризуется электроемкостью, которая равна отношению заряда конденсатора к напряжению:

Емкость конденсатора равна 1 Ф, если при напряжении 1 В его заряд равен 1 Кл.

Емкость плоского конденсатора прямо пропорциональна площади пластин S , диэлектрической проницаемости среды , и обратно пропорциональна расстоянию между пластинами d:

Электрическое поле единица измерения

ЭНЕРГИЯ ЗАРЯЖЕННОГО КОНДЕНСАТОРА.

Точные эксперименты показывают, что W=CU 2 /2

Так как q = CU , то

Электрическое поле единица измерения

Плотность энергии электрического поля

Электрическое поле единица измерения

где V = Sd — объем, занимаемый полем внутри конденсатора. Учитывая, что емкость плоского конденсатора

Электрическое поле единица измерения

а напряжение на его обкладках U=Ed

Электрическое поле единица измерения

Пример. Электрон, двигаясь в электрическом поле из точки 1 через точку 2, увеличил свою скорость от 1000 до 3000 км/с. Определите разность потенциалов между точками 1 и 2.

Электрическое поле единица измерения

Электрическое поле единица измерения

Так как электрон увеличил свою скорость, то ускорение и сила Кулона сонаправлены со скоростью. Значит, электрон движется против силовых линий поля. Изменение кинетической энергии электрона равно работе поля :

Электрическое поле единица измерения

Ответ: разность потенциалов равна — 22,7 В.

Полем с электричеством называют особый вид материи. Он существует вокруг заряда либо вокруг заряженных частиц. Напряжённость – главная силовая характеристика для этого явления. Единица измерения – В/м. Но есть и другие особенности, присущие такому параметру. Формула напряжённости – отдельный вопрос.

Определение

Напряженность относят к величинам физического характера. Как уже говорилось, это силовой параметр. Равен обычно соотношению между силой, действующей на заряженное тело, и значением.

Электрическое поле единица измерения

Важно. Показатель напряжённости относят и к векторным величинам. Определяют, с каким значением действует сила на заряженные предметы. При необходимости упрощает определение направления. Главная единица измерения – ньютон на кулон.

Определение напряжённости упрощает организацию измерения показателя. Если заранее знать значение энергии того или иного тела – проще измерить характеристику, воздействующую на него. Как найти напряжённость – объяснено дальше.

Формула силы электрического поля

В большинстве случаев учёные применяют стандартную формулу:

Своё значение вектора, который обозначается как E, существует в каждой отдельной временной точке. В форме записи этот показатель тоже имеет свою фиксацию:

Интересно. Таким образом, это функция пространственных координат. Допустимо изменение характеристики по мере течения времени. За счёт этого происходит образование электромагнитного поля, учитывающего и вектор магнитной индукции. Его регулируют законы термодинамики, то же касается напряжённости электрического поля, формула через заряды тоже давно известна.

Электрическое поле единица измерения

Воздействие поля на заряды

При воздействии полей предполагается, что в полную силу входят магнитные и электрические составляющие. Она выражается в так называемой формуле по силе Лоренца:

Своим значением наделён каждый элемент в этом определении напряжённости электрического поля, формула без них не будет точной:

  1. Q – обозначение заряда.
  2. V – скорость.
  3. B – вектор относительно магнитной индукции. Это основная характеристика, присущая магнитному пространству. Без неё измерять нельзя.

Косой крест применяют для обозначения векторного произведения. Единицы измерения для формулы – СИ. Заряды тоже становятся частью общей системы.

Электрическое поле единица измерения

Новые значения – более общие по сравнению с формулой, чьё описание приведено ранее. Причина – в том, что частица под воздействием сил.

Обратите внимание. Предполагается, что частица в этом случае – точечная. Но благодаря этой формуле просто определить воздействие на тела вне зависимости от текущей формы. При этом распределение зарядов и токов внутри не имеет значения. Главное – уметь рассчитывать E и B, чтобы применять формулу правильно. Тогда проще проводить и определение напряжённости поля, формулы с другими цифрами.

Измерение

Напряжённость относят к векторным величинам, оказывающим силовое воздействие на заряженные частицы.

Существуют не только теоретические, но и практические способы для измерения напряжённости.

  • Если речь о произвольных – сначала берут тело, содержащее заряд. Это правило распространяется на любые электронные устройства.

Размеры тела должны быть меньше размеров другого тела, генерирующего заряд. Достаточно небольшого металлического шарика, у которого есть свой заряд. Заряд шарика измеряют электрометром, потом приспособление помещают внутрь. Динамометр уравновешивает силу, воздействующую на предмет. После этого можно снять показания с единицей измерения – Ньютонами.

Электрическое поле единица измерения

Значение напряжённости получают, разделив значение силы на величину заряда.

  • Измерить расстояние – первый шаг, когда определяют напряжённость в конкретной точке, удалённой от тела на какую-либо величину.

Полученную величину разделяют на расстояние, возведённое в квадрат. К полученному результату применяют специальный коэффициент. Его выражение такое: 9*10^9.

  • Отдельного изучения заслуживает ситуация с конденсаторами.

В данном случае первый этап – измерение напряжения между пластинами. Предполагается использование вольтметра. Потом определяются с расстоянием между этими пластинами. Единица измерения – метры. Получают результат, который и будет напряжённостью. Направлять её можно по-разному.

Единицы измерения

Ньютоны на кулон, либо вольты на метр – единицы измерения, которые применяют для данного параметра в общепринятых системах.

Электрическое поле единица измерения

Постоянный электрический ток

Электрический ток – направленное движение свободных носителей энергии в веществе или внутри вакуума. Этот показатель появляется при соблюдении главных условий:

  • Есть источник энергии.
  • Замкнутость пути, который используется для перемещения.

I – буква, которую применяют для обозначения силы тока.

Электрическое поле единица измерения

Важно. Единица измерения – Амперы. Величина тока зависит от количества электричества или разрядов, которые проходят через поперечное сечение у проводника в единицу времени.

Когда речь о постоянном токе – предполагается, что с течением времени не меняются его направление, основная величина.

Электрическое поле единица измерения

Амперметр – устройство, применяемое для измерения силы тока. Его подключение к цепи – последовательное. Показатель важен, поскольку от него зависят и сила воздействия и другие подобные параметры. На практике часто встречаются ситуации, когда сила тока заменяется плотностью. В данном случае единица измерения – Ампер на метр квадратный. Площадь сечения проводов выражается в мм 2 . И плотность тока предполагает опору на эту характеристику.

Электрическое поле можно назвать реально существующим явлением, как и любые предметы. Поле и вещества относят к основным формам существования материи. Способность действовать с силой на заряды – главное свойство. Его используют, чтобы обнаруживать, измерять явления. Ещё одна характеристика – распространение со скоростью света. Это тоже важно для тех, кто занимается изучением подобных факторов.

Из сказанного выше ясно, что напряженность электрического поля — одна из основных фундаментальных величин классической электродинамики. В этой области физики можно назвать сопоставимыми с ней по значению только вектор магнитной индукции (вместе с вектором напряженности электрического поля образующий тензор электромагнитного поля) и электрический заряд. С некоторой точки зрения столь же важными представляются потенциалы электромагнитного поля (образующие вместе единый электромагнитный потенциал).

  • Остальные понятия и величины классической электродинамики, такие как электрический ток, плотность тока, плотность заряда, вектор поляризации, а также вспомогательные поле электрической индукции и напряженность магнитного поля — хотя достаточно важны и значимы, но их значение гораздо меньше, и по сути могут считаться полезными и содержательными, но вспомогательными величинами.

Приведем краткий обзор основных контекстов классической электродинамики в отношении напряженности электрического поля.

Сила, с которой действует электромагнитное поле на заряженные частицы

Полная сила, с которой электромагнитное поле (включающее вообще говоря электрическую и магнитную составляющие) действует на заряженную частицу, выражается формулой силы Лоренца:

Электрическое поле единица измерения

где q — электрический заряд частицы, Электрическое поле единица измерения— ее скорость, Электрическое поле единица измерения— вектор магнитной индукции (основная характеристика магнитного поля), косым крестом Электрическое поле единица измеренияобозначено векторное произведение. Формула приведена в единицах СИ.

Как видим, эта формула полностью согласуется с определением напряженности электрического поля, данном в начале статьи, но является более общей, т.к. включает в себя также действие на заряженную частицу (если та движется) со стороны магнитного поля.

В этой формуле частица предполагается точечной. Однако эта формула позволяет рассчитать и силы, действующие со стороны электромагнитного поля на тела любой формы с любым распределением зарядов и токов — надо только воспользоваться обычным для физики приемом разбиения сложного тела на маленькие (математически — бесконечно маленькие) части, каждая из которых может считаться точечной и таким образом входящей в область применимости формулы.

Остальные формулы, применяемые для расчета электромагнитных сил (такие, как, например, формула силы Ампера) можно считать следствиями [5] фундаментальной формулы силы Лоренца, частными случаями ее применения итп.

Однако для того, чтобы эта формула была применена (даже в самых простых случаях, таких, как расчет силы взаимодействия двух точечных зарядов), необходимо знать (уметь рассчитывать) Электрическое поле единица измеренияи Электрическое поле единица измерениячему посвящены следующие параграфы.

Уравнения Максвелла

Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемые уравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряженности электрического поля:

Электрическое поле единица измерения Электрическое поле единица измерения

Здесь Электрическое поле единица измерения— плотность заряда, Электрическое поле единица измерения— плотность тока, Электрическое поле единица измерения— универсальные константы (уравнения здесь записаны в единицах СИ).

Здесь приведена наиболее фундаментальная и простая форма уравнений Максвелла — так называемые "уравнения для вакуума" (хотя, вопреки названию, они вполне применимы и для описания поведения электромагнитного поля в среде). Подробно о других формах записи уравнений Максвелла — см. основную статью.

Этих четырех уравнений вместе с пятым — уравнением силы Лоренца — в принципе достаточно, чтобы полностью описать классическую (то есть не квантовую) электродинамику, то есть они представляют ее полные законы. Для решения конкретных реальных задач с их помощью необходимы еще уравнения движения "материальных частиц" (в классической механике это законы Ньютона), а также зачастую дополнительная информация о конкретных свойствах физических тел и сред, участвующих в рассмотрении (их упругости, электропроводности, поляризуемости итд итп), а также о других силах, участвующих в задаче (например, о гравитации), однако вся эта информация уже не входит в рамки электродинамики как таковой, хотя и оказывается зачастую необходимой для построения замкнутой системы уравнений, позволяющих решить ту или иную конкретную задачу в целом.

«Материальные уравнения»

Такими дополнительными формулами или уравнениями (обычно не точными, а приближенными, зачастую всего лишь эмпирическими), которые не входят непосредственно в область электродинамики, но поневоле используются в ней ради решения конкретных практических задач, называемыми «материальными уравнениями», являются, в частности:

  • Закон Ома,
  • Закон поляризации
  • в разных случаях многие другие формулы и соотношения.

Связь с потенциалами

Связь напряженности электрического поля с потенциалами в общем случае такова:

Электрическое поле единица измерения

где Электрическое поле единица измерения— скалярный и векторный потенциалы. Приведем здесь для полноты картины и соответствующее выражение для вектора магнитной индукции:

Электрическое поле единица измерения

В частном случае стационарных (не меняющихся со временем) полей, первое уравнение упрощается до:

Электрическое поле единица измерения

Это выражение для связи электростатического поля с электростатическим потенциалом.

Электростатика

Важным с практической и с теоретической точек зрения частным случаем в электродинамике является тот случай, когда заряженные тела неподвижны (например, если исследуется состояние равновесия) или скорость их движения достаточно мала чтобы можно было приближенно воспользоваться теми способами расчета, которые справедливы для неподвижных тел. Этим частным случаем занимается раздел электродинамики, называемый электростатикой.

Как мы уже заметили выше, напряженность электрического поля в этом случае выражается через скалярный потенциал как

Электрическое поле единица измерения

Электрическое поле единица измерения Электрическое поле единица измерения Электрическое поле единица измерения

то есть электростатическое поле оказывается потенциальным полем. ( Электрическое поле единица измеренияв этом случае — случае электростатики — принято называть электростатическим потенциалом).

  • Также и обратно Электрическое поле единица измерения

Уравнения поля (уравнения Максвелла) при этом также сильно упрощаются (уравнения с магнитным полем можно исключить, а в уравнение с дивергенцией можно подставить Электрическое поле единица измерения) и сводятся к уравнению Пуассона:

Электрическое поле единица измерения

а в областях, свободных от заряженных частиц — к уравнению Лапласа:

Электрическое поле единица измерения

Учитывая линейность этих уравнений, а следовательно применимость к ним принципа суперпозиции, достаточно найти поле одного точечного единичного заряда, чтобы потом найти потенциал или напряженность поля, создаваемого любым распределением зарядов (суммируя решения для точечного заряда).

Теорема Гаусса

Очень полезной в электростатике оказывается теорема Гаусса, содержание которой сводится к интегральной форме единственного нетривиального для электростатики уравнения Максвелла:

Электрическое поле единица измерения

где интегрирование производится по любой замкнутой поверхности S (вычисляя поток Электрическое поле единица измерениячерез эту поверхность), Q — полный (суммарный) заряд внутри этой поверхности.

Эта теорема дает крайне простой и удобный способ расчета напряженности электрического поля в случае, когда источники имеют достаточно высокую симметрию, а именно сферическую, цилиндрическую или зеркальную+трансляционную. В частности, таким способом легко находится поле точечного заряда, сферы, цилиндра, плоскости.

Напряжённость электрического поля точечного заряда

В единицах СИ

Для точечного заряда в электростатике верен закона Кулона

Электрическое поле единица измерения

Электрическое поле единица измерения. Электрическое поле единица измерения.

Исторически закон Кулона был открыт первым, хотя с теоретической точки зрения уравнения Максвелла более фундаментальны. С этой точки зрения он является их следствием. Получить этот результат проще всего исходя из теоремы Гаусса, учитывая сферическую симметрию задачи: выбрать поверхность S в виде сферы с центром в точечном заряде, учесть, что направление Электрическое поле единица измерениябудет очевидно радиальным, а модуль этого вектора одинаков везде на выбранной сфере (так что E можно вынести за знак интеграла), и тогда, учитывая формулу для площади сферы радиуса r: Электрическое поле единица измерения, имеем:

Электрическое поле единица измерения

откуда сразу получаем ответ для E.

Ответ для Электрическое поле единица измеренияполучается тогда интегрированием E:

Электрическое поле единица измерения

Для системы СГС

Формулы и их вывод аналогичны, отличие от СИ лишь в константах.

Электрическое поле единица измерения Электрическое поле единица измерения Электрическое поле единица измерения

Напряженность электрического поля произвольного распределения зарядов

По принципу суперпозиции для напряженности поля совокупности дискретных источников имеем:

Электрическое поле единица измерения

Электрическое поле единица измерения Электрическое поле единица измерения

Электрическое поле единица измерения Электрическое поле единица измерения

Для непрерывного распределения аналогично:

Электрическое поле единица измерения

где V — область пространства, где расположены заряды (ненулевая плотность заряда), или всё пространство, Электрическое поле единица измерения— радиус-вектор точки, для которой считаем Электрическое поле единица измерения, Электрическое поле единица измерения— радиус-вектор источника, пробегающий все точки области V при интегрировании, dV — элемент объема. Можно подставить x,y,z вместо Электрическое поле единица измерения, Электрическое поле единица измерениявместо Электрическое поле единица измерения, Электрическое поле единица измерениявместо dV.

Системы единиц

В системе СГС напряжённость электрического поля измеряется в СГСЭ единицах, в системе СИ — в ньютонах на кулон или в вольтах на метр (русское В/м, международное V/m).